Determining Remaining Strength of Corroded Pipelines

Houston Section April 10, 2012

Who is DCP Midstream?

- Formerly Duke Energy Field Services the Company was renamed on January 1, 2007 to align with DCP Midstream Partners.
- DCP Midstream, LLC is a private company. A 50-50 joint venture between Spectra Energy and ConocoPhillips.
- One of the nation's largest natural gas gatherers and processors (7 Bcf/day), the largest natural gas liquids (NGLs) producer and one of the largest NGL marketers in the U.S.
- Operates in 26 states, gathers raw natural gas through ~62,000 miles of pipe and processes gas through 61 plants, produces 360,000 bbls/day NGLs
- Over 3,000 employees

Introduction

- Pipeline Design
- ASME B31G
- Limits for B31G
- Misc

Pipeline Design

Barlow's formula relates pressure to pipe attributes

P = 2 St / D

- P = Design pressure
- S = Yield strength in psi
- D = Outside diameter
- t = Nominal wall thickness

Pipeline Design

• Barlow's formula

- P = Design pressure
- S = Yield strength in psi
- D = Outside diameter
- t = Nominal wall thickness
- F = Design factor
- E = Longitudinal joint factor
- T = Temperature derating factor...

Peter Barlow

Peter Barlow

Peter Barlow

Self-educated, Peter Barlow (1776-1862) became assistant mathematics master at the Royal Military Academy, Woolwich, in 1801. He published numerous mathematical works, including New Mathematical Tables (1814). Later known as Barlow's Tables, this compilation of factors and functions of all numbers from 1 to 10,000 was considered so accurate and so useful that it has been regularly reprinted ever since.

Woolwich -SE of London. Active 1741-1939

Pipeline Design

Design factor (F)

- Liquid Pipelines 0.72
- Gas Pipelines
 - ➤ Class 1 0.72
 - ➤ Class 2 0.60
 - ➤ Class 3 0.50
 - ➤ Class 4 0.40

Pipeline Design

- Example: Liquid line
- 6" .219 wt X42
- $P = (2 \times 42000 \times .219 / 6.625)$
- P = 2777 psi
- $P_{max mop} = 2777 \text{ psi } x .72 = 1999$

A supplement to ASME B31

Calculates Burst pressure with pipe parameters and metal loss >>

- Length L
- depth d

Corroded Pipe Assessment

Failure Criterion

$$\sigma_{\text{Failure}} = \overline{\sigma} \left[\frac{1 - \frac{A}{A_0}}{1 - \frac{A}{A_0} M^{-1}} \right]$$

Where:

 $\sigma_{\!\scriptscriptstyle Failure}\,$ Predicted Failure Stress

- $\overline{\sigma}$ Flow Stress, f{SMYS}
- A Effective Area of Missing Metal
- Ao Original Area, {L x t}
- M Folias Factor, f{L, D, t}
- L Effective Length

Folias Factor

For
$$L \le \sqrt{50 \text{ D t}}$$
, $M = \sqrt{1 + 0.6275 \frac{L^2}{D t} - 0.003375 \left(\frac{L^2}{D t}\right)^2}$
For $L > \sqrt{50 \text{ D t}}$, $M = 0.032 \frac{L^2}{D t} + 3.3$

- Based on Battelle Institute work July 1971
- ASME Guide
- ASME B31G 1984
- Modified B31G 1991
- Current edition B31G-2009

FIG. 1-1 PARABOLIC CRITERIA FOR CLASSIFYING CORROSION DEFECTS ACCORDING TO PREDICTED FAILURE STRESS

Equations are empirical or in some cases semiempirical.

What is this?

Empirical knowledge comes from observation only. You don't know why or have any idea of why reaction A follows situation B but you have seen it happen so many times that you KNOW that is what is going to happen.

People knew that things fell down long before there was a theory of gravitation. Such knowledge was empirical.

Empirical knowledge not only comes from observation but also by testing.

Read more: cp

http://wiki.answers.com/Q/What_is_empirical_knowledge#ixzz1rfG SpoND

3 versions

- ASME B31G
- Modified B31G
- Effective Area Method

Difference in methods

Application

- Yes for blunt metal loss
- Yes for external corrosion
- Yes for internal corrosion

Limitations (RULES)

- Depth less than 80% wt
- No Cracks
- No gouges
- No stress Concentrator
- No selective seam corrosion
- No selective weld corrosion
- Apply operating characteristics P_{safe}

In operations, always

Identify cause of metal loss

• Mitigate cause of metal loss

- Company Operating Manuals
- KAPA ("KAPA" is an acronym for "Kiefner & Associates Pipe Assessment")
- RSTRENG®

B31 G Interaction

Interaction rule

Commonly used 1" x 6t interaction

- 1 inch in axial length separation
- 6 times pipe wall thickness for width separtion (.250 wt = 1.5 in)
- If separation < 1" x 6t group or cluster the anomalies together.

Interaction B31G

Fig. 1.12-1 Corrosion Pit Interaction Distances

B31G

Depth,	Wall Thickness, t, in.													
<i>d</i> , in.	0.083	0.125	0.156	0.188	0.203	0.219	0.250	0.312						
0.01	3.32	No limit												
0.02	1.53	4.08	4.55	3.83	No limit	No limit	No limit	No limit						
0.03	0.88	1.89	3.37	5.00	5.20	5.40	5.77	No limit						
0.04	0.65	1.25	1.90	2.91	3.61	4.65	5.77	6.44						
0.05	0.51	0.97	1.40	1.97	2.30	2.73	3.86	6.44						
0.06	0.42	0.80	1.13	1.54	1.77	2.04	2.67	4.77						
0.07		0.68	0.96	1.29	1.46	1.66	2.11	3.37						
0.08		0.59	0.83	1.11	1.25	1.42	1.77	2.68						
0.09		0.52	0.74	0.98	1.10	1.24	1.54	2.26						
0.10		0.46	0.66	0.88	0.99	1.11	1.37	1.97						
0.11			0.59	0.80	0.90	1.01	1.24	1.76						
0.12			0.54	0.73	0.82	0.92	1.13	1.60						
0.13				0.66	0.75	0.85	1.04	1.46						
0.14				0.61	0.69	0.78	0.96	1.35						
0.15				0.56	0.64	0.72	0.89	1.26						
0.16					0.59	0.67	0.83	1.18						
0.17						0.63	0.78	1.10						
0.18							0.73	1.04						
0.19							0.69	0.98						
0.20							0.65	0.93						
0.21								0.88						
0.22								0.84						
0.23								0.80						
0.24								0.76						

Table 3-2 Values of L for Pipe Sizes \geq NPS 6 and < NPS 10

Since L >15/16" must repair

What about Modified B31G?

Links and Reference

http://www.kiefner.com/downloads.asp

http://www.ttoolboxes.com/Products/

Duane Cronin https://uwspace.uwaterloo.ca/bitstream/10012/478/ 1/NQ51187.pdf

Diameter Wt SMYS

CVN Design Factor Percent Operating Stress Maximum Allowable Pressure

MOP

Kiefner & Associates, Inc. 585 Scherers Court Worthington, Ohio 43085 Phone (514) 888-520 [Sax (514) 888-7323 www.kiefner.com

US Customary

Metric

6.625 inches 0.219 inches 42,000 psi 1440 psi 20 ft-lb 0.72

51.9% 1,999.3 psi Line Number N-1 Station Number 236+45 Mile Post 4.5

		Envelope Defect Profile	Grid 1					
e Area hod	Predicted Failure Pressure (P ₁)	2867.7	2867.7					
Effection	Factor of Safety (P/MOP)	1.99	1.99					
d 831G	Predioted Failure Pressure (Pr)	3007.8	3007.8					
Modifie	Factor of Safety (P/MOP)	2.09	2.09					
B31G	Predicted Failure Pressure (P ₁)	2743.8	2743.8					
	Factor of Safety (P/MOP)	1.91	1.91					
	Total Length	1.00	1.00					
	Eff. length	1.00	1.00					
meters	Start Length	0.00	0.00					
Calculated Para	Stop Length	1.00	1.00					
	Max Pit Depth	0.120	0.120					
	Max. Depth/Thiok	0.548	0.548					
	Eff. Area	0.12	0.12					

eleased: April 29, 2005

Kapa

Kiefner & Associates, Inc. 585 Ocherers Court Worthington, Ohio 43085 Phone (514) 888-8220 Fax (514) 888-7323 Www.kiefter.com												
Diameter Wt SMYS MOP CVN Design Factor Percent Operatin	6,625 0,219 42,000 1440 20 0.72 g Stress	inches inches psi psi 1-10 51.9%		N.C	JG Customa Vietric	Ŷ	Line Nun Station N Mile Post	nber lumber t	N-1 236+45 4.5			
Maximum Allowa	ble Precoure	1,999.3 Envelope Deteot Profile	Orid 1			T						
Area	Predioted Failure Pressure (P,)	2867.7	2867.7									

Kapa p2

	10	Envelope Defeat Profile	Grid 1					
e Area	Predioted Failure Pressure (P,)	2867.7	2867.7					
Effectiv	Factor of Batety (P/MOP)	1.99	1 99					
d 831G	Predicted Failure Pressure (P ₂)	1007.8	3007.8					
Modiffe	Factor of Safety (P/MOP)	2.09	2.09					
5	Predicted Fallure Pressure (Pg)	2743,8	2743.8					
83	Factor of Safety (P/MOP)	1.91	1.91					
	Total Length	1.00	1,00					
	Eff. length	1.00	1,00					
ş	Start Length	0.00	0.00					

Limits for B31G

- Depth less than 80% wt
- Apply operating characteristics P_{safe}
- No Cracks
- No gouges
- No stress Concentrator
- No selective seam corrosion
- No selective weld corrosion

Limits for B31G

OK for blunt metal loss

- Internal Corrosion
- External Corrosion
- Welds if metal loss not selective

Must stop cause of metal loss – remember identify the cause, and fix

ILI spreadsheets -example B31G calcs

	EVENT L	OCATION		AN	IOMALY D	ESCRIPTIC	NC	ANOMALY REPAIR FACTORS					
EVENT	WHEEL COUNT (ft.)	DIST FROM U/S WELD (ft.)	DIST TO D/S WELD (ft.)	CLOCK	DEPTH %	LENGTH (in.)	INT / EXT	W.T (in.)	CALC. PFAIL .85dl (psi)	CALC. PFAIL .85dl / MAOP	COMMEN TS		
Anomaly	103397.81	27.42	30.81	1:50	50	22.9	I	0.17	990	1.16			
Anomaly	111302.51	32.43	30.94	1:00	54	10.3	I	0.175	989	1.16			
Girth Weld ID	Relative Distance (ft) 19.51	Absolute Distance (ft) 211,621.20	Comment s Metal Loss EXTERNA	Peak Depth (%) 41%	Length (in) 7.86	Width (in) 1.39	Local Wall Thickness (in) 0.250	SMYS (psi) 42000	RSTREN G Burst (psi) 1509	Otientatio n clock) 5:30	Orientation (Degrees) 195		
	20.61	211,622.30	Metal Loss EXTERNA	39%	10.06	2.84	0.250	42000	1538	5:45	171		
Pipeline Feature	INT/ EXT	Odometer (ft)	W. T.	Pipe Grade	Depth (%)	Depth (in.)	Length (in.)	Width (in.)	O'Clock Orient: t'n	Burst Pressure (psi)	ERF		
Metal Loss	EXT	519.01	0.312	X52	40%	0.125	0.8	0.6	3:01	2965	1.165		
Metal Loss	EXT	523.04	0.312	X52	36%	0.112	0.6	0.6	3:31	2999	1.179		

Test Section 3 bottom view, typical pitting 20-40 %

