Materials Challenges for Deep-water Oil & Gas Production

A Presentation for the NACE Houston Chapter August 13, 2013

Lillian Skogsberg & Jim Skogsberg

Subsea Scenarios-API 17A

Subsea production system - several subsystems for HC production from one or more subsea wells and transfer HC to a processing facility located offshore (fixed, floating or subsea) or onshore, or to inject water/gas through subsea wells.

Key

1- Running and retrieving tools

2 - Installation and work over controls

3 - Completion/work over riser and work over controls umbilical

4 - Satellite well

5 - Template

6 – Flow lines

7 - Production controls

8 - Production riser

9 - Riser base/SSIV

- 10 Manifold
- 11 Export flow line

E & P Challenges

- Targets in deep water water depth > 8,000 feet
- Project Life ~ 30 years
- Mooring adjustments due to hurricanes affect fixed TLP's & subsea structures
- Weight & Space limits on floaters
- EOR
- Maybe HPHT up to 30,000 psi & 550°F
- Subsea processing

- Well costs on TLP's or Floaters ~ \$30MM (drill & complete)
- Well costs subsea ~ \$80MM (drill & complete)
- Wells complex
- Commodity shortages
- Mills @ capacity
 - Increasing uncertainty in project estimates
- $H_2S a$ few ppm to 1,000 psi

Complex Equipment

High Pressure High Temperature (HPHT)

Target Wells

- Bottom Hole Pressure > 20,000 psi 30,000 psi
- Temperature > 400°F 550 F

Materials Needed for Completions

- NACE MR0175/IS015156 with pH vs H_2S
- Steel YS > 95 ksi min to 140 160 ksi
- For sour service, K_{ISSC} > 40 ksi√in
- Long lead times
- High Qualification Costs
- □ Failures in North Sea & GOM:
 - Tubing hangers, production valves etc.

Subsea Materials Selection

Not to mention installation and Operation

Issues:

- Well equipment
- Trees
- Manifold/ESP
- Jumpers
- Sleds
- Flow lines-high temp CI needed
- Umbilicals
- Subsea Control Module
- Seals
- Insulation
- CP
- \circ HSE

Steps in Selecting CRAs

- 1. Define design life: 10 years, 20 years, zero tolerance for failure?
- 2. Establish economic risk: HPHT, high H2S, subsea or deep water?
- 3. Determine alloy strength requirements based upon design.
- 4. Choose most economic alloy to prevent general corrosion.
 - CO2 corrosion
 - H2S corrosion
 - Organic acids
- 5. Consider localized corrosion resistance (pitting & under-deposit corrosion)
 - Chlorides
 - Sulfur
- 6. Choose alloy to resist environmental cracking.
 - Sulfide stress-cracking and
 - Stress-corrosion cracking

NACEMR0175/ISO1516

7. As needed, compliment field experience and the literature with laboratory study.

8/15/2013

Selecting CRAs – Defining Mechanical Properties

- Define required yield strength and tensile strength for design in burst, collapse and tensile load.
- Consider the effect of temperature on yield and tensile strengths.
 - 5% to 15% decrease depending upon the alloy and the manufacturing process
- Some CRAs have non-isotropic mechanical properties.
 - A factor for cold-worked alloys NOT for the 13 % Cr alloys or the agehardenable alloys (alloy 825, 28% Cr etc.)
 - 5% to 15% decrease depending upon the alloy and the manufacturing process

XHPHT wells –limited design data.

No recognized industry data base for design.

Selecting CRAs: Define All Environments That May Cause Corrosion & Cracking

- Production Environment: short-term & long-term
 - Water cut, bubble point, velocity, pH, & chlorides.
 - Partial Pressures of H₂S & CO₂
 - Reservoir souring?
 - BHT & surface or mud-line temperatures
 - BHP & FTP
 - Contaminants organic acids
 - Desired project life: 5 yrs, 10 yrs, or 20 yrs?
- Annular Environment: short-term & long-term
 - Chlorides types of clear brines NaCl, NaBr₂, ZnBr₂
 - o pH, oxygen scavenger, corrosion inhibitor, & biocide
 - Effect of acid gas leaks up the annulus
- Workover:
 - Acidizing, clear brines without inhibitor & oxygen scavenger, & mixing with sour gases during flow back.
 - Flow back through subsea equipment
 - Shut in conditions (weeks, months to years)

Both production and annular environments must be documented for changing conditions.

Challenges for Selection of Low Alloy Steels

• Forgings:

- Thicker-walls
- Higher strengths >80 ksi SMYS
- Weldability : <250 HVN hardness in sour service & < 350 HVN hardness in sea water with CP

• Casing and Tubing:

- Strength grades of 110 ksi to 140 ksi with good notch toughness
- In sour service, grades >95 ksi with cracking resistance down to +40°F.
- Reliable industry data base for effect of temperature on mechanical properties
- For all equipment: lead time for delivery

Tubing and Casing Part 2 Table A.3 uses Designations in API Spec 5CT/ISO

>66°C (150°F)			
	>79°C (175°F)	≥107°C (≥225°F)	
<u>Tubing, Casing</u> <u>Grades</u>	<u>Tubing, Casing</u> <u>Grades</u>	<u>Tubing, Casing</u> <u>Grades</u>	
N-80 (Q & T), C-95	N-80, P-110	Q-125 ^(G)	
Proprietary Q&T to 700 MPa (110 ksi) max. YS	Proprietary Q&T to 965 MPa (140 ksi) max. YS	No major changes	
		in 2003.	
	Tubing, Casing Grades N-80 (Q & T), C-95 Proprietary Q&T to 700 MPa (110 ksi) max. YS	Jubing, Casing GradesTubing, Casing GradesTubing, Casing GradesTubing, Casing GradesN-80 (Q & T), C-95N-80, P-110Proprietary Q&T to 700 MPa (110 ksi) max. YSProprietary Q&T to 965 MPa (140 ksi) max. YS	

Challenges for Selection of CRAs

- Alloys must be evaluated for resistance to SCC at 450°F>T> 550°F.
 - Most wells in the world are at <350°F.
 - NACEMR0175 limits alloys to 450°F except for C-276 and C-22HS.
- Alloys must be evaluated with 160 ksi min SMYS
 - Except for alloy C-276, NACEMR0175 limits alloys to 150 KSI max YS.
- Evaluation of age-hardenable nickel-base alloys for hydrogen embrittlement service
 - Failures of tubing hangers and packers
 - Clear brine packer fluids, galvanic coupling, acidizing, & cathodic protection
 - Not covered in NACEMR0175.
- Need a reliable industry data base for effect of temperature on mechanical properties
 - Transverse vs. longitudinal
- Lead time for delivery
 - Major issue for large diameter and range 3 pipe.

Table A.14 —Environmental and materials limits for annealed and cold-worked. solid-solution nickel-based alloys used as any equipment or component

pH

Sulfur-

resistant?

Remarks

Chloride

conc.

max.

sed Allovs			°C (°F)	kPa (psi)	mg/L						
		Cold-worked alloys of types 4c, 4d and 4e	232 (450)	200 (30)	See "Remarks" column	See "Remarks" column	No	Any combination of chloride concentration and <i>in situ</i> pH occurring in production environments is acceptable.			
ed alloys are grouped position.			218 (425)	700 (100)	See "Remarks" column	See "Remarks" column	No				
			204 (400)	1 000 (150)	See "Remarks" column	See "Remarks" column	No				
e 4C: Alloys 825,			177 (350)	1 400 (200)	See "Remarks" column	See "Remarks" column	No				
Cr, & 2535.			132 (270)	See "Remarks" column	See "Remarks" column	See "Remarks" column	Yes	Any combination of hydrogen sulfide, chloride concentration and <i>in situ</i> pH in production environments is acceptable.			
e 4D: Alloys G-3,		Cold-worked alloys of types 4d and 4e	218 (425)	2 000 (300)	See "Remarks" column	See "Remarks" column	No	Any combination of chloride concentration and <i>in situ</i> pH occurring in production environments is acceptable.			
			149 (300)	See "Remarks" column	See "Remarks" column	See "Remarks" column	Yes	Any combinations of hydrogen sulfide, chloride concentration and <i>in situ</i> pH in production environments are acceptable.			
e 4E: Alloy C-276		Cold-worked	232 (450)	7 000 (1 000)	See "Remarks" column	See "Remarks" column	Yes	Any combination of chloride concentration, <i>in situ</i> pH occurring in production environments is acceptable.			
				alloys of ty	alloys of type 4e	204 (400)	See "Remarks" column	See "Remarks" column	See "Remarks" column	Yes	Any combination of hydrogen sulfide, chloride concentration and <i>in situ</i> pH in production environments is acceptable.
оу Туре		 Wrought or cast solid-solution nickel-based products in these applications shall be in the annealed and cold-worked condition and shall meet all of the following. a) The maximum hardness value for alloys in these applications shall be 40 HRC. b) The maximum yield strength of the alloys achieved by cold work shall be Type 40: 1 034 MPa (150 ksl); 									
mpositions fined in Table A 12											
		 — Type 4d: 1 0 — Type 4e: 1 1 	034 MPa (150 ksl);			V	properties			
		 c) UNS N10276 (T) 	ype 4e) when use	el at a minimur	n temperature	of 121°C (250'	F) shall have	a maximum hardness of 45 HRC.			
		NOTE The limits of	of application of th	ne materials ty	pes 4c, 4d and	4e in this table	e overlap.				

Materials type

Temperature

max.

Partial

pressure

H₂S P_{H_2S}

max.

Table A.14: Cold Worked Ni-Ba

Ni-base by com

Тур 280

Тур 255

Тур

All Сс De

Metallurgical
properties.
properties.

14

Summary

- The production of oil and gas from deep water wells provides technical challenges in the development of materials to provide safe and reliable service at reasonable cost.
- Materials technology continues to evolve to meet this challenge.

Thank you for your attention and the opportunity to present this talk. Are there any questions?